/*
This file contains proprietary software owned by Motorola Mobility, Inc.
No rights, expressed or implied, whatsoever to this software are provided by Motorola Mobility, Inc. hereunder.
(c) Copyright 2011 Motorola Mobility, Inc. All Rights Reserved.
*/
// Todo: This shoudl be converted to a module
var VecUtils = require("js/helper-classes/3D/vec-utils").VecUtils;
function SubpathOffsetPoint(pos, mapPos) {
this.Pos = Vector.create([pos[0],pos[1],pos[2]]);
this.CurveMapPos = Vector.create([mapPos[0], mapPos[1], mapPos[2]]);
}
function SubpathOffsetTriangle(v0, v1, v2) {
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
this.n = Vector.create([0,0,1]); //replace with the actual cross product later
}
function sortNumberAscending(a,b){
return a-b;
}
function sortNumberDescending(a,b){
return b-a;
}
function SegmentIntersections(){
this.paramArray = [];
}
///////////////////////////////////////////////////////////////////////
// Class GLSubpath
// representation a sequence of cubic bezier curves.
// Derived from class GLGeomObj
///////////////////////////////////////////////////////////////////////
function GLSubpath() {
///////////////////////////////////////////////////
// Instance variables
///////////////////////////////////////////////////
this._Anchors = [];
this._BBoxMin = [0, 0, 0];
this._BBoxMax = [0, 0, 0];
this._isClosed = false;
this._samples = []; //polyline representation of this curve
this._sampleParam = []; //parametric distance of samples, within [0, N], where N is # of Bezier curves (=# of anchor points if closed, =#anchor pts -1 if open)
this._anchorSampleIndex = []; //index within _samples corresponding to anchor points
this._UnprojectedAnchors = [];
//initially set the _dirty bit so we will construct samples
this._dirty = true;
//whether or not to use the canvas drawing to stroke/fill
this._useCanvasDrawing = true;
//the X and Y location of this subpath's canvas in stage world space of Ninja
this._canvasX = 0;
this._canvasY = 0;
//stroke information
this._strokeWidth = 0.0;
this._strokeColor = [0.4, 0.4, 0.4, 1.0];
this._strokeMaterial;
this._strokeStyle = "Solid";
this._materialAmbient = [0.2, 0.2, 0.2, 1.0];
this._materialDiffuse = [0.4, 0.4, 0.4, 1.0];
this._materialSpecular = [0.4, 0.4, 0.4, 1.0];
this._fillColor = [0.4, 0.4, 0.4, 1.0];
this._fillMaterial;
this._DISPLAY_ANCHOR_RADIUS = 5;
//drawing context
this._world = null;
//tool that owns this subpath
this._drawingTool = null;
this._planeMat = null;
this._planeMatInv = null;
this._planeCenter = null;
this.inheritedFrom = GLGeomObj;
this.inheritedFrom();
//used to query what the user selected, OR-able for future extensions
this.SEL_NONE = 0; //nothing was selected
this.SEL_ANCHOR = 1; //anchor point was selected
this.SEL_PREV = 2; //previous handle of anchor point was selected
this.SEL_NEXT = 4; //next handle of anchor point was selected
this.SEL_PATH = 8; //the path itself was selected
this._selectMode = this.SEL_NONE;
this._selectedAnchorIndex = -1;
this._SAMPLING_EPSILON = 0.5; //epsilon used for sampling the curve
this._DEFAULT_STROKE_WIDTH = 20; //use only if stroke width not specified
this._MAX_OFFSET_ANGLE = 10; //max angle (in degrees) between consecutive vectors from curve to offset path
// (current GLGeomObj complains if buildBuffers/render is added to GLSubpath prototype)
//buildBuffers
// Build the stroke vertices, normals, textures and colors
// Add that array data to the GPU using OpenGL data binding
this.buildBuffers = function () {
return; //no need to do anything for now
}//buildBuffers()
//render
// specify how to render the subpath in Canvas2D
this.render = function () {
// get the world
var world = this.getWorld();
if (!world) throw( "null world in subpath render" );
// get the context
var ctx = world.get2DContext();
if (!ctx) throw ("null context in subpath render")
var numAnchors = this.getNumAnchors();
if (numAnchors === 0)
return; //nothing to do for empty paths
ctx.save();
this.createSamples(); //dirty bit checked in this function...will generate a polyline representation
var bboxMin = this.getBBoxMin();
var bboxMax = this.getBBoxMax();
var bboxWidth = bboxMax[0] - bboxMin[0];
var bboxHeight = bboxMax[1] - bboxMin[1];
var bboxMid = Vector.create([0.5 * (bboxMax[0] + bboxMin[0]), 0.5 * (bboxMax[1] + bboxMin[1]), 0.5 * (bboxMax[2] + bboxMin[2])]);
ctx.clearRect(0, 0, bboxWidth, bboxHeight);
ctx.lineWidth = this._strokeWidth;
ctx.strokeStyle = "black";
if (this._strokeColor)
ctx.strokeStyle = MathUtils.colorToHex( this._strokeColor );
ctx.fillStyle = "white";
if (this._fillColor){
//ctx.fillStyle = MathUtils.colorToHex( this._fillColor );
var fillColorStr = "rgba("+parseInt(255*this._fillColor[0])+","+parseInt(255*this._fillColor[1])+","+parseInt(255*this._fillColor[2])+","+this._fillColor[3]+")";
ctx.fillStyle = fillColorStr;
}
var lineCap = ['butt','round','square'];
ctx.lineCap = lineCap[1];
ctx.beginPath();
var prevAnchor = this.getAnchor(0);
ctx.moveTo(prevAnchor.getPosX()-bboxMin[0],prevAnchor.getPosY()-bboxMin[1]);
for (var i = 1; i < numAnchors; i++) {
var currAnchor = this.getAnchor(i);
ctx.bezierCurveTo(prevAnchor.getNextX()-bboxMin[0],prevAnchor.getNextY()-bboxMin[1], currAnchor.getPrevX()-bboxMin[0], currAnchor.getPrevY()-bboxMin[1], currAnchor.getPosX()-bboxMin[0], currAnchor.getPosY()-bboxMin[1]);
prevAnchor = currAnchor;
}
if (this._isClosed === true) {
var currAnchor = this.getAnchor(0);
ctx.bezierCurveTo(prevAnchor.getNextX()-bboxMin[0],prevAnchor.getNextY()-bboxMin[1], currAnchor.getPrevX()-bboxMin[0], currAnchor.getPrevY()-bboxMin[1], currAnchor.getPosX()-bboxMin[0], currAnchor.getPosY()-bboxMin[1]);
prevAnchor = currAnchor;
}
if (this._isClosed){
ctx.fill();
}
/*
var numPoints = this._samples.length/3;
ctx.moveTo(this._samples[0],this._samples[1]);
for (var i=0;i=0;i--) {
var newAnchor = new GLAnchorPoint();
var oldAnchor = this._Anchors[i];
newAnchor.setPos(oldAnchor.getPosX(),oldAnchor.getPosY(),oldAnchor.getPosZ());
newAnchor.setPrevPos(oldAnchor.getNextX(),oldAnchor.getNextY(),oldAnchor.getNextZ());
newAnchor.setNextPos(oldAnchor.getPrevX(),oldAnchor.getPrevY(),oldAnchor.getPrevZ());
revAnchors.push(newAnchor);
}
if (this._selectedAnchorIndex >= 0){
this._selectedAnchorIndex = (numAnchors-1) - this._selectedAnchorIndex;
}
this._Anchors = revAnchors;
this._dirty=true;
}
//remove all the anchor points
GLSubpath.prototype.clearAllAnchors = function () {
this._Anchors = [];
this._isClosed = false;
this._dirty = true;
}
GLSubpath.prototype.insertAnchorAtParameter = function(index, param) {
if (index+1 >= this._Anchors.length && !this._isClosed) {
return;
}
//insert an anchor after the specified index using the parameter, using De Casteljau subdivision
var nextIndex = (index+1)%this._Anchors.length;
//build the De Casteljau points
var P0P1 = VecUtils.vecInterpolate(3, this._Anchors[index].getPos(), this._Anchors[index].getNext(), param);
var P1P2 = VecUtils.vecInterpolate(3, this._Anchors[index].getNext(), this._Anchors[nextIndex].getPrev(), param);
var P2P3 = VecUtils.vecInterpolate(3, this._Anchors[nextIndex].getPrev(), this._Anchors[nextIndex].getPos(), param);
var P0P1P2 = VecUtils.vecInterpolate(3, P0P1, P1P2, param);
var P1P2P3 = VecUtils.vecInterpolate(3, P1P2, P2P3, param);
var anchorPos = VecUtils.vecInterpolate(3, P0P1P2, P1P2P3, param);
//update the next of the anchor at index and prev of anchor at nextIndex
var isPrevCoincident = false;
var isNextCoincident = false;
if (VecUtils.vecDist( 3, P0P1, this._Anchors[index].getNext()) < this._SAMPLING_EPSILON) {
//no change to the next point
isPrevCoincident = true;
} else {
this._Anchors[index].setNextPos(P0P1[0], P0P1[1], P0P1[2]);
}
if (VecUtils.vecDist( 3, P2P3, this._Anchors[nextIndex].getPrev()) < this._SAMPLING_EPSILON) {
//no change to the prev point
isNextCoincident = true;
} else {
this._Anchors[nextIndex].setPrevPos(P2P3[0], P2P3[1], P2P3[2]);
}
//create a new anchor point
var newAnchor = new GLAnchorPoint();
if (isPrevCoincident && isNextCoincident){
anchorPos[0]=P1P2[0];anchorPos[1]=P1P2[1];anchorPos[2]=P1P2[2];
newAnchor.setPos(anchorPos[0],anchorPos[1],anchorPos[2]);
newAnchor.setPrevPos(anchorPos[0],anchorPos[1],anchorPos[2]);
newAnchor.setNextPos(anchorPos[0],anchorPos[1],anchorPos[2]);
} else {
newAnchor.setPrevPos(P0P1P2[0], P0P1P2[1], P0P1P2[2]);
newAnchor.setNextPos(P1P2P3[0], P1P2P3[1], P1P2P3[2]);
newAnchor.setPos(anchorPos[0], anchorPos[1], anchorPos[2]);
}
//insert the new anchor point at the correct index and set it as the selected anchor
this._Anchors.splice(nextIndex, 0, newAnchor);
this._selectedAnchorIndex = nextIndex;
this._dirty = true;
}
GLSubpath.prototype._checkIntersectionWithSamples = function(startIndex, endIndex, point, radius){
//check whether the point is within the radius distance from the curve represented as a polyline in _samples
//return the parametric distance along the curve if there is an intersection, else return null
//will assume that the BBox test is performed outside this function
if (endIndex bboxMax[d]){
bboxMax[d] = controlPts[i][d];
}
}
}
//check whether the bbox of the control points contains the point within the specified radius
for (var d=0;d<3;d++){
if (point[d] < (bboxMin[d]-radius)){
return null;
}
if (point[d] > (bboxMax[d]+radius)){
return null;
}
}
//check if the curve is already flat, and if so, check the distance from the segment C0C3 to the point
//measure distance of C1 and C2 to segment C0-C3
var distC1 = MathUtils.distPointToSegment(controlPts[1], controlPts[0], controlPts[3]);
var distC2 = MathUtils.distPointToSegment(controlPts[2], controlPts[0], controlPts[3]);
var maxDist = Math.max(distC1, distC2);
var threshold = this._SAMPLING_EPSILON; //this should be set outside this function //TODO
if (maxDist < threshold) { //if the curve is flat
var distP = MathUtils.distPointToSegment(point, controlPts[0], controlPts[3]); //TODO we may need to neglect cases where the non-perpendicular distance is used...
if (distP>radius)
return null;
else {
var param = MathUtils.paramPointProjectionOnSegment(point, controlPts[0], controlPts[3]); //TODO this function is already called in distPointToSegment...optimize by removing redundant call
//var param = VecUtils.vecDist(3, point, controlPts[0])/VecUtils.vecDist(3, controlPts[3], controlPts[0]);
if (param<0)
param=0;
if (param>1)
param=1;
return beginParam + (endParam-beginParam)*param;
}
}
//subdivide this curve using De Casteljau interpolation
var C0_ = VecUtils.vecInterpolate(3, controlPts[0], controlPts[1], 0.5);
var C1_ = VecUtils.vecInterpolate(3, controlPts[1], controlPts[2], 0.5);
var C2_ = VecUtils.vecInterpolate(3, controlPts[2], controlPts[3], 0.5);
var C0__ = VecUtils.vecInterpolate(3, C0_, C1_, 0.5);
var C1__ = VecUtils.vecInterpolate(3, C1_, C2_, 0.5);
var C0___ = VecUtils.vecInterpolate(3, C0__, C1__, 0.5);
//recursively sample the first half of the curve
var midParam = (endParam+beginParam)*0.5;
var param1 = this._checkIntersection(Vector.create([controlPts[0],C0_,C0__,C0___]), beginParam, midParam, point, radius);
if (param1!==null){
return param1;
}
//recursively sample the second half of the curve
var param2 = this._checkIntersection(Vector.create([C0___,C1__,C2_,controlPts[3]]), midParam, endParam, point, radius);
if (param2!==null){
return param2;
}
//no intersection, so return null
return null;
}
//whether the point lies within the bbox given by the four control points
GLSubpath.prototype._isWithinBoundingBox = function(point, ctrlPts, radius) {
var bboxMin = Vector.create([Infinity, Infinity, Infinity]);
var bboxMax = Vector.create([-Infinity,-Infinity,-Infinity]);
for (var i=0;i bboxMax[d]){
bboxMax[d] = ctrlPts[i][d];
}
}
}
//check whether the bbox of the control points contains the point within the specified radius
for (var d=0;d<3;d++){
if (point[d] < (bboxMin[d]-radius)){
return false;
}
if (point[d] > (bboxMax[d]+radius)){
return false;
}
}
return true;
}
GLSubpath.prototype.pickAnchor = function (pickX, pickY, pickZ, radius) {
var numAnchors = this._Anchors.length;
var selAnchorIndex = -1;
var retCode = this.SEL_NONE;
var radSq = radius * radius;
var minDistance = Infinity;
//check if the clicked location is close to the currently selected anchor position
if (this._selectedAnchorIndex>=0 && this._selectedAnchorIndex=0 && this._selectedAnchorIndex=0 && selAnchorIndex === -1) {
var distSq = this._Anchors[this._selectedAnchorIndex].getPrevDistanceSq(pickX, pickY, pickZ);
if (distSq < minDistance && distSq < radSq){
selAnchorIndex = this._selectedAnchorIndex;
minDistance = distSq;
retCode = retCode | this.SEL_PREV;
} else {
//check the next for this anchor point
distSq = this._Anchors[this._selectedAnchorIndex].getNextDistanceSq(pickX, pickY, pickZ);
if (distSq 1) {
//start with the first anchor position (since the Bezier curve start point is not added in the sample function below)
//this._samples.push(this._Anchors[0].getPosX());
//this._samples.push(this._Anchors[0].getPosY());
//this._samples.push(this._Anchors[0].getPosZ());
for (var i = 0; i < numAnchors - 1; i++) {
//get the control points
var C0X = this._Anchors[i].getPosX();
var C0Y = this._Anchors[i].getPosY();
var C0Z = this._Anchors[i].getPosZ();
var C1X = this._Anchors[i].getNextX();
var C1Y = this._Anchors[i].getNextY();
var C1Z = this._Anchors[i].getNextZ();
var C2X = this._Anchors[i + 1].getPrevX();
var C2Y = this._Anchors[i + 1].getPrevY();
var C2Z = this._Anchors[i + 1].getPrevZ();
var C3X = this._Anchors[i + 1].getPosX();
var C3Y = this._Anchors[i + 1].getPosY();
var C3Z = this._Anchors[i + 1].getPosZ();
var beginParam = i;
var endParam = i+1;
this._anchorSampleIndex.push(this._samples.length/3); //index of sample corresponding to anchor i
this._sampleCubicBezier(C0X, C0Y, C0Z, C1X, C1Y, C1Z, C2X, C2Y, C2Z, C3X, C3Y, C3Z, beginParam, endParam);
} //for every anchor point i, except last
if (this._isClosed) {
var i = numAnchors - 1;
//get the control points
var C0X = this._Anchors[i].getPosX();
var C0Y = this._Anchors[i].getPosY();
var C0Z = this._Anchors[i].getPosZ();
var C1X = this._Anchors[i].getNextX();
var C1Y = this._Anchors[i].getNextY();
var C1Z = this._Anchors[i].getNextZ();
var C2X = this._Anchors[0].getPrevX();
var C2Y = this._Anchors[0].getPrevY();
var C2Z = this._Anchors[0].getPrevZ();
var C3X = this._Anchors[0].getPosX();
var C3Y = this._Anchors[0].getPosY();
var C3Z = this._Anchors[0].getPosZ();
var beginParam = i;
var endParam = i+1;
this._anchorSampleIndex.push(this._samples.length/3); //index of sample corresponding to anchor i
this._sampleCubicBezier(C0X, C0Y, C0Z, C1X, C1Y, C1Z, C2X, C2Y, C2Z, C3X, C3Y, C3Z, beginParam, endParam);
} else {
this._anchorSampleIndex.push((this._samples.length/3) - 1); //index of sample corresponding to last anchor
}
} //if (numAnchors >== 2) {
//re-compute the bounding box (this also accounts for stroke width, so assume the stroke width is set)
this.computeBoundingBox(true);
} //if (this._dirty)
this._dirty = false;
}
GLSubpath.prototype.computeBoundingBox = function(useSamples){
this._BBoxMin = [Infinity, Infinity, Infinity];
this._BBoxMax = [-Infinity, -Infinity, -Infinity];
if (useSamples) {
var numPoints = this._samples.length/3;
if (numPoints === 0) {
this._BBoxMin = [0, 0, 0];
this._BBoxMax = [0, 0, 0];
} else {
for (var i=0;i pt[d]) {
this._BBoxMin[d] = pt[d];
}
if (this._BBoxMax[d] < pt[d]) {
this._BBoxMax[d] = pt[d];
}
}//for every dimension d from 0 to 2
}
}
}
else{
//build a bbox of the anchor points, not the path itself
var numAnchors = this._Anchors.length;
var anchorPts = [Vector.create([0,0,0]), Vector.create([0,0,0]), Vector.create([0,0,0])];
if (numAnchors === 0) {
this._BBoxMin = [0, 0, 0];
this._BBoxMax = [0, 0, 0];
} else {
for (var i = 0; i < numAnchors; i++) {
anchorPts[0] = (Vector.create([this._Anchors[i].getPosX(),this._Anchors[i].getPosY(),this._Anchors[i].getPosZ()]));
anchorPts[1] = (Vector.create([this._Anchors[i].getPrevX(),this._Anchors[i].getPrevY(),this._Anchors[i].getPrevZ()]));
anchorPts[2] = (Vector.create([this._Anchors[i].getNextX(),this._Anchors[i].getNextY(),this._Anchors[i].getNextZ()]));
for (var p=0;p<3;p++){
for (var d = 0; d < 3; d++) {
if (this._BBoxMin[d] > anchorPts[p][d]) {
this._BBoxMin[d] = anchorPts[p][d];
}
if (this._BBoxMax[d] < anchorPts[p][d]) {
this._BBoxMax[d] = anchorPts[p][d];
}
}//for every dimension d from 0 to 2
} //for every anchorPts p from 0 to 2
} //for every anchor point i
} //else of if (numSamples === 0) {
}//else of if useSamples
//increase the bbox given the stroke width
for (var d = 0; d < 3; d++) {
this._BBoxMin[d]-= this._strokeWidth/2;
this._BBoxMax[d]+= this._strokeWidth/2;
}//for every dimension d from 0 to 2
}
//returns v such that it is in [min,max]
GLSubpath.prototype._clamp = function (v, min, max) {
if (v < min)
return min;
if (v > max)
return max;
return v;
},
//input: point sIn in stage-world space, planeMidPt in stage-world space, matrix planeMat that rotates plane into XY (parallel to view plane), inverse of planeMat
//returns: sIn 'unprojected'
GLSubpath.prototype.unprojectPoint = function ( sIn, planeMidPt, planeMat, planeMatInv)
{
var s = sIn.slice(0);
s[0] -= planeMidPt[0]; s[1] -= planeMidPt[1]; //bring s to the center of the plane
// unproject the point s
var i;
var viewZ = 1400;
if (MathUtils.fpCmp(viewZ,-s[2]) !== 0){
z = s[2]*viewZ/(viewZ + s[2]);
var x = s[0]*(viewZ - z)/viewZ,
y = s[1]*(viewZ - z)/viewZ;
s[0] = x; s[1] = y; s[2] = z;
}
// add the translation back in
s[0] += planeMidPt[0]; s[1] += planeMidPt[1];
return s;
},
GLSubpath.prototype.computeUnprojectedNDC = function (pos, bboxMid, bboxDim, r, l, t, b, z, zn) {
//unproject pos from stageworld to unprojected state
var ppos = this.unprojectPoint(pos, this._planeCenter, this._planeMat, this._planeMatInv);
//make the coordinates lie in [-1,1]
var x = (ppos[0] - bboxMid[0]) / bboxDim[0];
var y = -(ppos[1] - bboxMid[1]) / bboxDim[1];
//x and y should never be outside the [-1,1] range
x = this._clamp(x, -1, 1);
y = this._clamp(y, -1, 1);
//apply the perspective transform
x *= -z * (r - l) / (2.0 * zn);
y *= -z * (t - b) / (2.0 * zn);
ppos[0] = x;
ppos[1] = y;
ppos[2] = 0; //z;
return ppos;
}
GLSubpath.prototype.makeStrokeMaterial = function()
{
var strokeMaterial;
if (this.getStrokeMaterial())
strokeMaterial = this.getStrokeMaterial().dup();
else
strokeMaterial = new FlatMaterial();
if (strokeMaterial)
{
strokeMaterial.init();
//if(!this.getStrokeMaterial() && this._strokeColor)
if(this._strokeColor)
{
strokeMaterial.setProperty("color", this._strokeColor);
}
}
this._materialArray.push( strokeMaterial );
this._materialTypeArray.push( "stroke" );
return strokeMaterial;
}
GLSubpath.prototype.makeFillMaterial = function()
{
var fillMaterial;
if (this.getFillMaterial())
fillMaterial = this.getFillMaterial().dup();
else
fillMaterial = new FlatMaterial();
if (fillMaterial)
{
fillMaterial.init();
//if(!this.getFillMaterial() && this._fillColor)
if (this._fillColor)
{
fillMaterial.setProperty("color", this._fillColor);
}
}
this._materialArray.push( fillMaterial );
this._materialTypeArray.push( "fill" );
return fillMaterial;
}
GLSubpath.prototype.getNearVertex = function( eyePt, dir ){
//get the parameters used for computing perspective transformation
var bboxDim = [];
var bboxMid = [];
bboxDim[0] = 0.5 * (this._BBoxMax[0] - this._BBoxMin[0]);
bboxMid[0] = 0.5 * (this._BBoxMax[0] + this._BBoxMin[0]);
bboxDim[1] = 0.5 * (this._BBoxMax[1] - this._BBoxMin[1]);
bboxMid[1] = 0.5 * (this._BBoxMax[1] + this._BBoxMin[1]);
bboxDim[2] = 0.5 * (this._BBoxMax[2] - this._BBoxMin[2]);
bboxMid[3] = 0.5 * (this._BBoxMax[2] + this._BBoxMin[2]);
// convert the stroke vertices into normalized device coordinates
var world = this.getWorld();
if (!world) return null;
var aspect = world.getAspect();
var zn = world.getZNear(), zf = world.getZFar();
var t = zn * Math.tan(world.getFOV() * Math.PI / 360.0), //top of the frustum
b = -t, //bottom
r = aspect * t, //right
l = -r; //left
// calculate the object coordinates from their NDC coordinates
var z = -world.getViewDistance();
// the eyePt and dir are in WebGL space...we need to convert each anchor point into the WebGL space
var numAnchors = this._Anchors.length;
var selAnchorPpos = null;
var minDistance = Infinity;
for (var i = 0; i < numAnchors; i++) {
var anchorPos = Vector.create([this._Anchors[i].getPosX(), this._Anchors[i].getPosY(), this._Anchors[i].getPosZ()]);
var ppos = this.computeUnprojectedNDC(anchorPos, bboxMid, bboxDim, r, l, t, b, z, zn);
var dist = MathUtils.distPointToRay(ppos, eyePt, dir);
if (dist < minDistance) {
selAnchorPpos = ppos;
minDistance = dist;
}
}
return selAnchorPpos;
}
GLSubpath.prototype.getNearPoint = function( eyePt, dir ){
return null;
}
//returns true if P is left of line through l0 and l1 or on it
GLSubpath.prototype.isLeft = function(l0, l1, P){
var signedArea = (l1[0]-l0[0])*(P[1] - l0[1]) - (P[0]-l0[0])*(l1[1]-l0[1]);
if (signedArea>=0)
return true;
else
return false;
}
//returns true if 2D point p is contained within 2D quad given by r0,r1,r2,r3 (need not be axis-aligned)
GLSubpath.prototype.isPointInQuad2D = function(r0,r1,r2,r3,p){
//returns true if the point is on the same side of the segments r0r1, r1r2, r2r3, r3r0
var isLeft0 = this.isLeft(r0,r1,p);
var isLeft1 = this.isLeft(r1,r2,p);
var isLeft2 = this.isLeft(r2,r3,p);
var isLeft3 = this.isLeft(r3,r0,p);
var andAll = isLeft0 & isLeft1 & isLeft2 & isLeft3;
if (andAll)
return true;
var orAll = isLeft0 | isLeft1 | isLeft2 | isLeft3;
if (!orAll)
return true;
return false;
}
GLSubpath.prototype.export = function()
{
var rtnStr = "type: " + this.geomType() + "\n";
rtnStr += "strokeWidth: " + this._strokeWidth + "\n";
rtnStr += "strokeStyle: " + this._strokeStyle + "\n";
rtnStr += "strokeMat: ";
if (this._strokeMaterial)
rtnStr += this._strokeMaterial.getName();
else
rtnStr += "flatMaterial";
rtnStr += "\n";
rtnStr += "fillMat: ";
if (this._fillMaterial)
rtnStr += this._fillMaterial.getName();
else
rtnStr += "flatMaterial";
rtnStr += "\n";
var isClosedStr = "false";
if (this._isClosed)
isClosedStr = "true";
rtnStr += "isClosed: " + isClosedStr + "\n";
//add the anchor points
var numAnchors = this._Anchors.length;
rtnStr += "numAnchors: " + numAnchors + "\n";
for (var i=0;i this._BBoxMax[0]) return false;
if (y < this._BBoxMin[1]) return false;
if (y > this._BBoxMax[1]) return false;
if (z < this._BBoxMin[2]) return false;
if (z > this._BBoxMax[2]) return false;
return true;
}
GLSubpath.prototype.collidesWithPoint = function (x, y) {
if (x < this._BBoxMin[0]) return false;
if (x > this._BBoxMax[0]) return false;
if (y < this._BBoxMin[1]) return false;
if (y > this._BBoxMax[1]) return false;
return true;
}