1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
/* <copyright>
This file contains proprietary software owned by Motorola Mobility, Inc.<br/>
No rights, expressed or implied, whatsoever to this software are provided by Motorola Mobility, Inc. hereunder.<br/>
(c) Copyright 2011 Motorola Mobility, Inc. All Rights Reserved.
</copyright> */
// Helper function for generating a RDGE primitive
var ShapePrimitive = {};
ShapePrimitive.create = function(coords, normals, uvs, indices, primType, vertexCount) {
var renderer = RDGE.globals.engine.getContext().renderer;
// to setup a primitive you must define it
// create a new primitive definition here to then fill out
var prim = new RDGE.rdgePrimitiveDefinition();
// the vertex definition declares how the data will be delivered to the shader
// the position of an element in array determines which attribute in a shader the
// data is bound to
prim.vertexDefinition = {
// this shows two ways to map this data to an attribute
"vert":{'type':renderer.VS_ELEMENT_POS, 'bufferIndex':0, 'bufferUsage': renderer.BUFFER_STATIC},
"a_pos":{'type':renderer.VS_ELEMENT_POS, 'bufferIndex':0, 'bufferUsage': renderer.BUFFER_STATIC},
"normal":{'type':renderer.VS_ELEMENT_FLOAT3, 'bufferIndex':1, 'bufferUsage': renderer.BUFFER_STATIC},
"a_nrm":{'type':renderer.VS_ELEMENT_FLOAT3, 'bufferIndex':1, 'bufferUsage': renderer.BUFFER_STATIC},
"a_normal":{'type':renderer.VS_ELEMENT_FLOAT3, 'bufferIndex':1, 'bufferUsage': renderer.BUFFER_STATIC},
"texcoord":{'type':renderer.VS_ELEMENT_FLOAT2, 'bufferIndex':2, 'bufferUsage': renderer.BUFFER_STATIC},
"a_texcoord":{'type':renderer.VS_ELEMENT_FLOAT2, 'bufferIndex':2, 'bufferUsage': renderer.BUFFER_STATIC}
};
// the actual data that correlates to the vertex definition
prim.bufferStreams = [ coords, normals, uvs ];
// what type of buffers the data resides in, static is the most common case
prim.streamUsage = [ renderer.BUFFER_STATIC, renderer.BUFFER_STATIC, renderer.BUFFER_STATIC ];
// this tells the renderer to draw the primitive as a list of triangles
prim.type = primType;
prim.indexUsage = renderer.BUFFER_STREAM;
prim.indexBuffer = indices;
// finally the primitive is created, buffers are generated and the system determines
// the data it needs to draw this primitive according to the previous definition
renderer.createPrimitive(prim, vertexCount);
return prim;
};
ShapePrimitive.getBounds = function( prim )
{
if (!verts || (nVerts <= 0)) return null;
var bounds = [verts[0], verts[1], verts[2], verts[0], verts[1], verts[2]];
var index = 3;
for (var i=1; i<nVerts; i++)
{
var x = verts[index], y = verts[index+1], z = verts[index+2];
index += 3;
if (x < bounds[0]) bounds[0] = x;
else if (x > bounds[3]) bounds[3] = x;
if (y < bounds[1]) bounds[1] = y;
else if (y > bounds[4]) bounds[4] = y;
if (z < bounds[2]) bounds[2] = z;
else if (z > bounds[5]) bounds[5] = z;
}
return bounds;
};
ShapePrimitive.refineMesh = function( verts, norms, uvs, indices, nVertices, paramRange, tolerance )
{
var oldVrtCount = nVertices;
// get the param range
var verts = prim.bufferStreams[0];
var nVerts = verts.length;
var xMin = verts[0], xMax = verts[0],
yMin = verts[1], yMax = verts[1],
zMin = verts[2], zMax = verts[2];
for (var index=3; index<verts.length; )
{
if (verts[index] < xMin) xMin = verts[index];
else if (verts[index] > xMax) xMax = verts[index];
index++;
if (verts[index] < yMin) yMin = verts[index];
else if (verts[index] > yMax) yMax = verts[index];
index++;
if (verts[index] < zMin) zMin = verts[index];
else if (verts[index] > zMax) zMax = verts[index];
index++;
}
return [xMin, yMin, zMin, xMax, yMax, zMax];
};
var pUMin = paramRange[0], pVMin = paramRange[1],
pUMax = paramRange[2], pVMax = paramRange[3];
var iTriangle = 0;
var nTriangles = indices.length/3;
var index = 0;
while (iTriangle < nTriangles)
{
// get the indices of the 3 vertices
var i0 = indices[index],
i1 = indices[index+1],
i2 = indices[index+2];
// get the uv values
//var vrtIndex = 3*iTriangle;
var iuv0 = 2 * i0,
iuv1 = 2 * i1,
iuv2 = 2 * i2;
var u0 = uvs[iuv0], v0 = uvs[iuv0+1],
u1 = uvs[iuv1], v1 = uvs[iuv1+1],
u2 = uvs[iuv2], v2 = uvs[iuv2+1];
// find the u and v range
var uMin = u0, vMin = v0;
if (u1 < uMin) uMin = u1; if (v1 < vMin) vMin = v1;
if (u2 < uMin) uMin = u2; if (v2 < vMin) vMin = v2;
var uMax = u0, vMax = v0;
if (u1 > uMax) uMax = u1; if (v1 > vMax) vMax = v1;
if (u2 > uMax) uMax = u2; if (v2 > vMax) vMax = v2;
// if the parameter range of the triangle is outside the
// desired parameter range, advance to the next polygon and continue
if ((uMin > pUMax) || (uMax < pUMin) || (vMin > pVMax) || (vMax < pVMin))
{
// go to the next triangle
iTriangle++;
index += 3;
}
else
{
// check thesize of the triangle in uv space. If small enough, advance
// to the next triangle. If not small enough, split the triangle into 3;
var du = uMax - uMin, dv = vMax - vMin;
if ((du < tolerance) && (dv < tolerance))
{
iTriangle++;
index += 3;
}
else // split the triangle into 4 parts
{
//calculate the position of the new vertex
var iPt0 = 3 * i0,
iPt1 = 3 * i1,
iPt2 = 3 * i2;
var x0 = verts[iPt0], y0 = verts[iPt0+1], z0 = verts[iPt0+2],
x1 = verts[iPt1], y1 = verts[iPt1+1], z1 = verts[iPt1+2],
x2 = verts[iPt2], y2 = verts[iPt2+1], z2 = verts[iPt2+2];
// calculate the midpoints of the edges
var xA = (x0 + x1)/2.0, yA = (y0 + y1)/2.0, zA = (z0 + z1)/2.0,
xB = (x1 + x2)/2.0, yB = (y1 + y2)/2.0, zB = (z1 + z2)/2.0,
xC = (x2 + x0)/2.0, yC = (y2 + y0)/2.0, zC = (z2 + z0)/2.0;
// calculate the uv values of the new coordinates
var uA = (u0 + u1)/2.0, vA = (v0 + v1)/2.0,
uB = (u1 + u2)/2.0, vB = (v1 + v2)/2.0,
uC = (u2 + u0)/2.0, vC = (v2 + v0)/2.0;
// calculate the normals for the new points
var nx0 = norms[iPt0], ny0 = norms[iPt0+1], nz0 = norms[iPt0+2],
nx1 = norms[iPt1], ny1 = norms[iPt1+1], nz1 = norms[iPt1+2],
nx2 = norms[iPt2], ny2 = norms[iPt2+1], nz2 = norms[iPt2+2];
var nxA = (nx0 + nx1), nyA = (ny0 + ny1), nzA = (nz0 + nz1); var nrmA = VecUtils.vecNormalize(3, [nxA, nyA, nzA], 1.0 ),
nxB = (nx1 + nx2), nyB = (ny1 + ny2), nzB = (nz1 + nz2); var nrmB = VecUtils.vecNormalize(3, [nxB, nyB, nzB], 1.0 ),
nxC = (nx2 + nx0), nyC = (ny2 + ny0), nzC = (nz2 + nz0); var nrmC = VecUtils.vecNormalize(3, [nxC, nyC, nzC], 1.0 );
// push everything
verts.push(xA); verts.push(yA); verts.push(zA);
verts.push(xB); verts.push(yB); verts.push(zB);
verts.push(xC); verts.push(yC); verts.push(zC);
uvs.push(uA), uvs.push(vA);
uvs.push(uB), uvs.push(vB);
uvs.push(uC), uvs.push(vC);
norms.push(nrmA[0]); norms.push(nrmA[1]); norms.push(nrmA[2]);
norms.push(nrmB[0]); norms.push(nrmB[1]); norms.push(nrmB[2]);
norms.push(nrmC[0]); norms.push(nrmC[1]); norms.push(nrmC[2]);
// split the current triangle into 4
indices[index+1] = nVertices; indices[index+2] = nVertices+2;
indices.push(nVertices); indices.push(i1); indices.push(nVertices+1); nTriangles++;
indices.push(nVertices+1); indices.push(i2); indices.push(nVertices+2); nTriangles++;
indices.push(nVertices); indices.push(nVertices+1); indices.push(nVertices+2); nTriangles++;
nVertices += 3;
// by not advancing 'index', we examine the first of the 3 triangles generated above
}
}
}
console.log( "refine mesh vertex count " + oldVrtCount + " => " + nVertices );
return nVertices;
};
if (typeof exports === "object") {
exports.ShapePrimitive = ShapePrimitive;
}
|